Gene Selection Using Random Forest and Proximity Differences Criterion on DNA Microarray Data
نویسندگان
چکیده
Selection of relevant genes for sample classification is a common task in most gene expression studies. As a powerful classification approach, random forest has been applied in this field, and it shows excellent performance compared with other classification methods. The measure of variable importance is the key of gene selection using random forest. However, the existing methods just consider the original variable importance measure based on the OOB error. In this paper, we proposed a new variable importance measure based on the difference of proximity matrix, and used it for gene selection on DNA microarray data. Compared with the existing variable importance analysis of random forest, the new method is more sensitive to information gene and yields small sets of genes while preserving predictive accuracy.
منابع مشابه
Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملDiagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data
Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCIT
دوره 5 شماره
صفحات -
تاریخ انتشار 2010